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Introduction

ﬁ

In-Line Inspection of gas pipelines is more
demanding, in particular for extreme (low/high)
flow and pressure conditions

Compressible nature of the medium gas requires
special tool configuration i.e. low friction sealing
elements or intelligent bypass valves

Some threats are more frequent in gas than in
liquid lines, e.g. Stress Corrosion Cracking

(SCC)

Absence of liquids require new Ultrasonic
Testing methods to characterize crack related
threats.
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Controlling the Inspection Speed ﬁ

Velocity (m/s)

= Flow Speed

= Resulting Tool Speed

» Basic Principle of Speed
Control Unit

* Pressure Dependency of
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'Controlling the Inspection Speed ﬁ
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Controlling

the Inspection Speed
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o ILI Inspection of a 56”
Gas-Pipeline

» 1.5D; Mitered Bends

* High Resolution MFL

» Difference between
Tool and Flow 5m/s
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Controlling the Tool Dynamics ﬁ
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Reduced Pressure and Flow Conditions

Low Pressure Kit
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Diameter [inch]

m Standard Set Up
m Piggable with minor modifications
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Closing the Gap — Low Flow Low Pressure

ﬁ

MFL Tools for Gas Pipelines

3D Concept of a 12" Low
Flow / Low Pressure MFL
Magnetizer

12" Low Flow / Low Pressure MFL Tool



08” High-Res MFL ILI

Tool — Low Pressure

ﬁ

Low Pressure Kit
*Pull-Unit

eLow Friction Setup
*Wheel Design

Magnet Unit
*Reduction of Friction
by 65 %

sImproved Start/Stop

Low Pressure Tool
Magnet Unit on Wheels
*E-Box Design

«U-Joint Design
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Low Pressure Example

Tool Speed [m/s]

welocity [mis]

Geometry Tool — Standard Setup
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Low Flow Condition

Special Drive Unit
Just Seal Principle
* Minimum Bypass
e Minimum Friction
* Optimized Centralization
» Optimized Load Capacity
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Combined ILI-Technologies
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high resolution geometry
inspection (Geo)

pipeline route mapping
(XY2)

corrosion mapping  with
magnetic flux leakage
(MFL)

mapping of shallow
Internal corrosion (SIC)
using eddy current
technology




'Dents and Pipe Geometry
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ROSEN Contour Following Proximity Sensor
(Compensated Deflection)

Radius Measurement

O Touchless Proximity Sensor
+

B Electronic Angle Sensor




Dents and Pipe Geometry
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Out of Roundness Correlates with Longseam Position

Predominant OoR Azimuth [°]

180

135

90

45

AA ‘ A
) ® A
A Ae A‘ A
EHd@s A +AA
) e B AMA
[ | AAA
| A
a
A
‘ J,
£ % 2 :
S o
LA Jo
Akm10 £A A o
okm12 A A A A ‘A ]
okm33 A | M A
Wkm60 ‘ A
45 a0 135

Longseam Position [°]

OoR between 0.6mm to 1mm
detected

180



Dents and Pipe Geometry ﬁ

Accurate Dent Characterization - Combined Technology

Signal Caliper Sensor
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Dents and Pipe Geometry
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Geometry Tool measurement
of check valve.

Checked immediately and
approved for MFL run.




Strain and Stress

(03)

NONMANDATORY APPENDIX R
ESTIMATING STRAIN IN DENTS

R1 STRAIN

Strain in dents may be estimated using data from
deformation in-line inspection (ILI) tools or from direct
measurement of the deformation contour. Direct mea-
surement techniques may consist of any method capable
ol describmg the depth and shape terms needed to esti-
mate strain. The strain estimating techniques may differ
depending on the type of data available. Interpolation or
other mathematical techniques may be used to develop
surface contour information from ILI or direct measure-
ment data. Although a method for estimating strain is
described herein, it is not intended to preclude the use
of other strain estimating techniques. See also Fig. R1.

R2 ESTIMATING STRAIN

Ry is the initial pipe surface radius, equal to ' the
nominal pipe OD. Determine the indented OD surface
radius of curvature, R, in a transverse plane through
the dent. The dent may only partially flatten the pipe
such that the curvature of the pipe surface in the trans-
verse plane is in the same direction as the original surface
curvature, in which case R is a positive quantity. If the
dent is re-entrant, meaning the curvature of the pipe
surface in the transverse plane is actually reversed, Ry

is a negative quantity. Determine the radius of curvature,
R; in a longitudinal plane through the dent. The term
R; as used herein will generally always be a negative
quantity. Other dimensional terms are: the wall thick-
ness, f; the dent depth, d; and the dent length, I..

(n) Calculate the bending strain in the circumferential
direction as

5 = 1 (1/Ry — 1/Ry)

Straln the bending strain in the longitudinal

& =41/ K

(c) Calculate the extensional strain it
direction as

Radius

& = (fa)d/LYy

(d) Calculate the strain on the inside pipe surface as
B = la‘?1E — & (82 + £3) + (&2 4 2_:3}1]5.“1

REMARK IS - the putside pipe surface as
" Ormy,
a

5 12
g = s #3)7] .

70t corre,

ASME Code, B31.8-2003, Appendix R, page 158



Strain and Stress
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g = Strain = displacement
r=radius = curvature

— v —



Strain and Stress

ILI Geometry Measurement and Analysis



Strain and Stress
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ILI Geometry Measurement and Analysis




Strain and Stress
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ILI Geometry Measurement and Analysis

1 local membrane strain in dent



Results and Reporting ﬁ

Data Arrays

e Strain -

« Curvature Dent Parameter = ===

« Geometry e Length =
* Width =
+ Depth
 max Strain ———

G ERERR




Content

ﬁ

* In-Line Inspection — Pipe Anomalies

Corrosion



Corrosion Mapping

Corrosion Mapping with MFL
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Corrosion Mapping with
Shallow Internal Corrosion Sensor



Measurement Principle
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SIC Sensor

SIC Sensor (schematic)

Sensor over full pipewall
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Measurement Principle ﬁ

SIC Sensor
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SIC Scan of TOL cut-out
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Measurement Principle
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Ultrasound is generated inside the pipeline itself
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Key Advantages of High Resolution EMAT Tool ﬁ

Sensitive Pixel
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\ Crack Detection
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Field Data
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Field Data ﬁ

ECD angle in deg

Correct |dent|f|cat|on of different types of coating
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EMAT — Track Record (1) ﬁ
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Conclusion

 Today, basically all critical anomalies can be
identified and characterized by the various inspection
technologies also for gas pipelines

« The combination of different inspection technologies
allows a more throughout assessment of the pipeline
integrity

 The operational requirements of an individual pipeline
can be addressed to a wide extend. Nowadays former
non-piggable pipelines can be inspected

 However, design of vehicles providing an acceptable
environment for the measurement under real
operational condition is still posing a challenge for the
future



Thank You for joining the presentation...

EMPOWERED BY TECHNOLOGY



